UT shines a light on forbidden wavelengths in photonic crystals

Jessica Vermeer
Leestijd: 1 minuut

Researchers from University of Twente’s Mesa+ Institute have developed a fully experimental method for determining the bandgap in crystals with a ‘3D photonic bandgap’. These crystals are used to control light and can be applied in new types of solar cells, sensors and miniature lasers.

Photonic crystals have a special structure, which forbids a range of wavelengths passing through. This adds control of light in silicon and opens up the possibility of connecting electronics and photonics. The crystals are created with nanoscale fabrication, leading to a perfectly periodic pattern of pores.

Until now, there was no practical way to evaluate the quality of a photonic crystal and to tell, for example, how the pore size and forbidden range match. Instead, theoretical models were used to determine the characteristic wavelength region. However, these idealized models always start with some assumptions, eg about fabrication disorders – not all of which can be included.

This article is exclusively available to premium members of Bits&Chips. Already a premium member? Please log in. Not yet a premium member? Become one and enjoy all the benefits.

Login